If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+42x+10=0
a = 24; b = 42; c = +10;
Δ = b2-4ac
Δ = 422-4·24·10
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{201}}{2*24}=\frac{-42-2\sqrt{201}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{201}}{2*24}=\frac{-42+2\sqrt{201}}{48} $
| 3(x-4)2+5(x-3)2=(2x-5)(4x-1)-40 | | 11x+7-7x+9=x+67= | | x2−3x−8=0 | | 12x^2+63x+5=0 | | -0.3x+30=60 | | 6*1(x+1)=36 | | 9a+27=8a+12 | | 115=x/6 | | x/1,2=7,5 | | 3x-17/2x+8=1 | | a/42=12 | | -5+x/3=8+2x+4/2 | | 6x/4+2=6+x | | 15-5m=4m-3 | | -7x-56=3x | | 18-15m=38-11m | | 11y+9=10y+4 | | 20-11y=80-8y | | 7x−5=16 | | -9y+48=7y | | 19-5x=2-6x | | 15-3x-4+8x=33 | | |4x+4|=13 | | 42-8m=6m+28 | | 30-13x=14-12x | | 48-6a=-3a | | x-x=78+95-41 | | 3z+9=4z+6 | | 2(x+3)(x+1)=x+15 | | 2*x-x=163+38-125 | | -3x+9=-2+14 | | 17*x-17x=8+175-3 |